
A few words on Assignment 1

The difference between a proof and a proof by contradiction. We
know that (P → Q) ∧Q is true and want to show by contradiction
that Q is true.

P Q P → Q (P → Q) ∧ P ¬Q

0

0

0

0

0 0

0

0

0

0

1

1 1

1

1

1

1

1

1

1

Dr Ewa Infeld Ryerson Univesity

MTH314: Discrete Mathematics for Engineers



A few words on Assignment 1

The difference between a proof and a proof by contradiction. We
know that (P → Q) ∧Q is true and want to show by contradiction
that Q is true.

P Q P → Q (P → Q) ∧ P ¬Q

0

0

0

0

0 0

0

0

0

0

1

1 1

1

1

1

1

1

1

1

Dr Ewa Infeld Ryerson Univesity

MTH314: Discrete Mathematics for Engineers



A few words on Assignment 1

The difference between a proof and a proof by contradiction. We
know that (P → Q) ∧Q is true and want to show by contradiction
that Q is true.

P Q P → Q (P → Q) ∧ P ¬Q

0

0

0

0

0 0

0

0

0

0

1

1 1

1

1

1

1

1

1

1

Dr Ewa Infeld Ryerson Univesity

MTH314: Discrete Mathematics for Engineers



A few words on Assignment 1

The difference between a proof and a proof by contradiction. We
know that P ↔ Q and Q → (P ↔ Q) are true and want to show
by contradiction that ¬P ∧ ¬Q is true.

P Q P ↔ Q Q → ¬(P ↔ Q) ¬P ∧ ¬Q

0

0

0

0

0

0 0

0

0

0

1

1 1

1

1

1

1

1

1 1

Dr Ewa Infeld Ryerson Univesity

MTH314: Discrete Mathematics for Engineers



A few words on Assignment 1

The difference between a proof and a proof by contradiction. We
know that P ↔ Q and Q → (P ↔ Q) are true and want to show
by contradiction that ¬P ∧ ¬Q is true.

P Q P ↔ Q Q → ¬(P ↔ Q) ¬P ∧ ¬Q

0

0

0

0

0

0 0

0

0

0

1

1 1

1

1

1

1

1

1 1

Dr Ewa Infeld Ryerson Univesity

MTH314: Discrete Mathematics for Engineers



A few words on Assignment 1

The difference between a proof and a proof by contradiction. We
know that P ↔ Q and Q → (P ↔ Q) are true and want to show
by contradiction that ¬P ∧ ¬Q is true.

P Q P ↔ Q Q → ¬(P ↔ Q) ¬P ∧ ¬Q

0

0

0

0

0

0 0

0

0

0

1

1 1

1

1

1

1

1

1 1

Dr Ewa Infeld Ryerson Univesity

MTH314: Discrete Mathematics for Engineers



A few words on Assignment 1

In a normal proof, we cross out the lines where assumptions
are false and show that we’re only left with the lines where
conclusion is true.

In a proof by contradiction we cross out the lines where
conclusion is true and show that we’re only left with lines
where at least one assumption is false.
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Sets

x

y

y = 4

This plane is a collection of
SET

points with coordinates (x , y).

Each point (x , y) either
belongs to the line or not.

y = 4 is a CONDITION
PREDICATE

that the point needs to
fulfill to belong to the line.

The point belongs to the
line IF AND ONLY IF the
y in (x , y) is equal to 4.
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Sets

A set is a collection of objects. It is determined by the elements
that belong to it.

S

x

y

z

So let the letter S denote a set.

x ∈ S reads as “x is an element of S .” or “x belongs to S .”
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Sets

A set is a collection of objects. It is determined by the elements
that belong to it.

S

xx

y

z

So let the letter S denote a set.

x ∈ S reads as “x is an element of S .” or “x belongs to S .”

x /∈ S reads as “x is not an element of S .” or “x does not belong
to S .”
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Sets

A set is a collection of objects. It is determined by the elements
that belong to it.

We think of two sets that have the same elements as the same set.

Example:
The set of natural numbers that are multiples of 2, and the set of
even numbers are the same set.

-8 -6 -4 -2 0 2 4 6 8

Why does it matter?
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Sets

A set is a collection of objects. It is determined by the elements
that belong to it.

We think of two sets that have the same elements as the same set.

Example:
The set of natural numbers that are multiples of 2, and the set of
even numbers are the same set.

-8 -6 -4 -2 0 2 4 6 8

Why does it matter? If two different programs compute the same
thing, are they the same program?
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Set Notation

x ∈ S reads as “x is an element of S .” or “x belongs to S .”

x /∈ S reads as “x is not an element of S .” or “x does not belong
to S .”

If the set S is a set of breakfast options, and you can pick eggs,
oatmeal or fruit, we use this notation:

S = {eggs, oatmeal, fuit}

Sometimes we see “:=” as in, S := {eggs, oatmeal , fuit}. This
usually happens when you define something. You can think of a
parallel with programming - the first time you declare S to be
something (S := {eggs, oatmeal , fuit}), vs when you simply state a
fact about S , (S = {eggs, oatmeal , fuit}.) You don’t always need
to “declare” it in math though.
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Some Useful Sets
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Some Useful Sets

N = {0, 1, 2, 3, . . . }
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Some Useful Sets

N = {0, 1, 2, 3, . . . } Z = {0, 1,−1, 2,−2, 3,−3, . . . }
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Predicates

A predicate is a sentence with a finite number of variables that
becomes a statement when specific values (from a set) are
substituted for the variables. Then it is either true or false.

Example: Take set S = {eggs, oatmeal, fuit} Predicate P(x) :
Alice had x for breakfast.

If we know that Alice had oatmeal and fruit for breakfast, P(x)
evaluates as true on x = oatmeal or x = fruit and false on
x = eggs.

P(. . . )
True

False

inputs

...
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Truth Set of a Predicate

A predicate P(x) evaluated on set S has a truth set, that is, all the
values x ∈ S on which P evaluates as true. The truth set of P(x)
is a subset of S . Write {x ∈ S |P(x)} for the truth set. It reads as
”The set of x in S such that P(x).”

If the predicate P(x) is false for every x ∈ S , the truth set is the
empty set.

{x ∈ S |P(x)} = {} = ∅

If the predicate P(x) is true for every x ∈ S , the truth set is S
itself.

{x ∈ S |P(x)} = S

Another set T is a subset of S if every element of T is also an
element of S . The emty set and S itself are both subsets of S .
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Some Predicates and their Truth Sets

We’re working in the Cartesian plane,
R× R = {(x , y) | x ∈ R, y ∈ R}

x

y

y = 4

P(x , y) : y = 4
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x

y

y = 4

x

y x = y

P(x , y) : y = 4 Q(x , y) : x = y
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Some Predicates and their Truth Sets

We’re working in the Cartesian plane,
R× R = {(x , y) | x ∈ R, y ∈ R}

x

y

y = 4

x

y x = y

x

y

P(x , y) : y = 4 Q(x , y) : x = y R(x , y) : x2 + y2 < 1
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Cartesian Product of Sets

If S and T are sets, and we need to pick an element from each, we
are really thinking of a set S ×T , a Cartesian product of S and T .
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Cartesian Product of Sets

If S and T are sets, and we need to pick an element from each, we
are really thinking of a set S × T , a Cartesian product of S and T .
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S = T = {1, 2, 3, 4, 5, 6}

(x , y) ∈ S × T
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Quantifiers

∀x ∈ S reads as “for all x in set S ...”
∃x ∈ S reads as “there exists x in set S ...”

Example:
Let H be the set of human beings.
P(x) : x is mortal.

∀x ∈ H, P(x)

means “All human beings are mortal.”

∃x ∈ H,P(x)

means “There exists a human being that is mortal.”

What are negations of these statements?
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Quantifiers

Example:
Let H be the set of human beings.
P(x) : x is mortal.

∀x ∈ H, P(x) ∃x ∈ H, ¬P(x)

“All human beings are mortal.” “There exists a human being
that’s immortal.”

∃x ∈ H,P(x) ∀x ∈ H, ¬P(x)

“There exists a human being All human beings are
that is mortal.” immortal.

What are negations of these statements?
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Quantifiers

Three logicians walk into a bar. The bartender asks “Does
everyone want beer?”
The first logician says “I don’t know.”
The second logician says “I don’t know.”
The third logician says “Yes.”

What happened here?

What if the bartender asked “Does anyone want beer?”
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Statements with Multiple Quantifiers

“There is no smallest positive real number”

∀ positive real numbers x , ∃ a positive real number y such that
y < x .

We sometimes say “strictly positive” to emphasise that we don’t include 0.
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Statements with Multiple Quantifiers

“There is no smallest positive real number”

∀ positive real numbers x , ∃ a positive real number y such that
y < x .

P(y) : y > 0
Q(x , y) : y < x

We sometimes say “strictly positive” to emphasise that we don’t include 0.
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Statements with Multiple Quantifiers

“There is no smallest positive real number”

∀ positive real numbers x , ∃ a positive real number y such that

y < x .

P(x) : x > 0, let R+ := {x ∈ R|P(x)}
Q(x , y) : y < x

∀x ∈ R+, ∃y ∈ R+ : Q(x , y)

We sometimes say “strictly positive” to emphasise that we don’t include 0.
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Negations of Statements with Multiple Quantifiers

We know that:

¬(∀x ∈ S , P(x)) ≡ ∃x ∈ S , ¬P(x)

¬(∃x ∈ S , P(x)) ≡ ∀x ∈ S , ¬P(x)

So what is
¬(∀x ∈ S , ∃y ∈ T ,P(x , y)) ?
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Negations of Statements with Multiple Quantifiers

We know that:

¬(∀x ∈ S , P(x)) ≡ ∃x ∈ S , ¬P(x)

¬(∃x ∈ S , P(x)) ≡ ∀x ∈ S , ¬P(x)

So what is
¬(∀x ∈ S , ∃y ∈ T ,P(x , y)) ?

“It is not true that for all x in S there exists y in T such that
P(x , y) is true.”
“ There exists x in S
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Negations of Statements with Multiple Quantifiers

We know that:

¬(∀x ∈ S , P(x)) ≡ ∃x ∈ S , ¬P(x)

¬(∃x ∈ S , P(x)) ≡ ∀x ∈ S , ¬P(x)

So what is
¬(∀x ∈ S , ∃y ∈ T ,P(x , y)) ?

“It is not true that for all x in S there exists y in T such that
P(x , y) is true.”
“ There exists x in S such that for all x in T

Dr Ewa Infeld Ryerson Univesity

MTH314: Discrete Mathematics for Engineers



Negations of Statements with Multiple Quantifiers

We know that:

¬(∀x ∈ S , P(x)) ≡ ∃x ∈ S , ¬P(x)

¬(∃x ∈ S , P(x)) ≡ ∀x ∈ S , ¬P(x)

So what is
¬(∀x ∈ S , ∃y ∈ T ,P(x , y)) ?

“It is not true that for all x in S there exists y in T such that
P(x , y) is true.”
“ There exists x in S such that for all x in T , P(x , y) is not true.’
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Negations of Statements with Multiple Quantifiers

We know that:

¬(∀x ∈ S , P(x)) ≡ ∃x ∈ S , ¬P(x)

¬(∃x ∈ S , P(x)) ≡ ∀x ∈ S , ¬P(x)

So what is

¬(∀x ∈ S , ∃y ∈ T ,P(x , y)) ≡ ∃x ∈ S , ∀y ∈ T , ¬P(x , y)

“It is not true that for all x in S there exists y in T such that
P(x , y) is true.”
“ There exists x in S such that for all x in T , P(x , y) is not true.’

GO SYSTEMATICALLY FROM LEFT TO RIGHT
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Negations of Statements with Multiple Quantifiers

Example:
Let H be the set of human beings.
Let F (x , y) be the predicate that means that x , y ∈ H are friends.

∀x ∈ H, ∃y ∈ H,P(x , y)

“Every person x has a friend y .”

∃x ∈ H, ∀y ∈ H, P(x , y)

“There exists a person x that is friends with everyone.”

¬(∀x ∈ H, ∃y ∈ H,P(x , y)) ≡ ∃x ∈ H, ∀y ∈ H, ¬P(x , y)

¬(∃x ∈ H, ∀y ∈ H, P(x , y)) ≡ ∀x ∈ H, ∃y ∈ H, ¬P(x , y)
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Negations of Statements with Multiple Quantifiers

Example:
Let H be the set of human beings.
Let F (x , y) be the predicate that means that x , y ∈ H are friends.

∀x ∈ H, ∃y ∈ H,P(x , y)

“Every person x has a friend y .”
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Vacuous Truth

Suppose we have an expression P → Q, and we know P must be
false. Then P → Q is vacuously true.

Vacuous means “empty.” We haven’t actually learned anything
about Q.

For statements with quantifiers, this means every statement about
the empty set is true.
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Vacuous Truth

Suppose we have an expression P → Q, and we know P must be
false. Then P → Q is vacuously true.

Vacuous means “empty.” We haven’t actually learned anything
about Q.

For statements with quantifiers, this means every statement about
the empty set is true.

U is the set of unicorns.
P(x) is “x is pink.”

∀x ∈ U, P(x)

“All unicorns are pink.”
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Vacuous Truth

Suppose we have an expression P → Q, and we know P must be
false. Then P → Q is vacuously true.

Vacuous means “empty.” We haven’t actually learned anything
about Q.

For statements with quantifiers, this means every statement about
the empty set is true.

U is the set of unicorns.
P(x) is “x is pink.”

∀x ∈ U, P(x)

“All unicorns are pink.” TRUE
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Vacuous Truth

Suppose we have an expression P → Q, and we know P must be
false. Then P → Q is vacuously true.

Vacuous means “empty.” We haven’t actually learned anything
about Q.

For statements with quantifiers, this means every statement about
the empty set is true.

A STATEMENT ABOUT THE EMPTY SET IS VACUOUSLY
TRUE. THINK OF THE IMPLICATION WHERE THE
CONDITION IS FALSE AS A STATEMENT ABOUT THE
EMPTY SET OF CASES WHERE IT IS TRUE.
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Quantified Conditional Statements

Let S be the set of Ryerson students.
P(x) : x is a MTH314 student.
Q(x) : x brought an iclicker to class today.

∀x ∈ S , P(x)→ Q(x)

“All MTH314 students brought iclickers to class today.”
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Quantified Conditional Statements

Let S be the set of Ryerson students.
P(x) : x is a MTH314 student.
Q(x) : x brought an iclicker to class today.

∀x ∈ S , P(x)→ Q(x)

“All MTH314 students brought iclickers to class today.”

If this is true, P(x) is a sufficient condition for Q(x) on domain S .

And Q(x) is a necessary conditions for P(x).
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Tarski’s World
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Proof Arguments

Suppose that:
(P ∨ Q) ∨ R

¬P

Q → R

We would like to prove R, not by writing out a truth table, but by
a mathematical argument.

Proof by contradiction:
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Proof Arguments

Suppose that:
(P ∨ Q) ∨ R

¬P

Q → R

We would like to prove R, not by writing out a truth table, but by
a mathematical argument.

Proof by contradiction: Suppose ¬R. We know that Q → R, so we
must have ¬Q.
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Proof Arguments

Suppose that:
(P ∨ Q) ∨ R

¬P

Q → R

We would like to prove R, not by writing out a truth table, but by
a mathematical argument.

Proof by contradiction: Suppose ¬R. We know that Q → R, so we
must have ¬Q. But then we have all ¬P, ¬Q, and ¬R so
(P ∨ Q) ∨ R must be false. But it was one of the assumptions, so
this cannot work!
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Proof Arguments

Suppose that:
(P ∨ Q) ∨ R

¬P

Q → R

We would like to prove R, not by writing out a truth table, but by
a mathematical argument.

Proof by contradiction: Suppose ¬R. We know that Q → R, so we
must have ¬Q. But then we have all ¬P, ¬Q, and ¬R so
(P ∨ Q) ∨ R must be false. But it was one of the assumptions, so
this cannot work!

Therefore, as evidenced by a proof by contradiction, R is true. �
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Proofs with Quantifiers

Proof that the sum of every two even integers is even.

Definition: an integer n is even if and only if there exists an integer
r such that n = 2r .

We’re working in set (domain) N.
P(n, r) : n = 2r is a predicate (and a relation!)

Suppose m, n are even.
Want: m + n is even.

∃r ∈ N,P(n, r) n = 2r
∃s ∈ N,P(m, s) m = 2s

n + m = 2r + 2s
n + m = 2(r + s)

Since r + s is an integer, n + m must be even. �
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Proofs with Quantifiers

“There is no smallest positive real number”
∀ positive real numbers x , ∃ a positive real number y such that

y < x .

P(x) : x > 0, let R+ := {x ∈ R|P(x)}
Q(x , y) : y < x

∀x ∈ R+, ∃y ∈ R+ : Q(x , y)
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Proofs with Quantifiers

“There is no smallest positive real number”
∀ strictly positive real numbers x , ∃ a positive real number y such

that y < x .

P(x) : x > 0, let R+ := {x ∈ R|P(x)}
Q(x , y) : y < x

∀x ∈ R+, ∃y ∈ R+ : Q(x , y)

Proof: Let x be any strictly positive real number. Then y = x
2 is a

strictly positive real number that is smaller than x . Therefore:

∀x ∈ R+, ∃y ∈ R+ : Q(x , y).
�
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