Final Revision Checklist

Math 20 Fall 2014, Dartmouth College

- 1. Basics
 - Randomness
 - Definition of random variable, sample space, event
 - Discrete
 - Distribution function m
 - Tree diagrams
 - Uniform distribution
 - Geometric distribution
 - Continuous
 - Continuous sample spaces
 - Spinners (pick a point on a circumference, uniform density wrt angle)
 - Throwing darts (pick a point on a circular target, uniform density wrt area)
 - Points on a stick problems
 - Bertrand Paradox: choice of coordinates matters
 - Density f
 - Cumulative probability
 - Dirac delta and Heaviside step function
 - Uniform density
 - Monte Carlo sampling
- 2. Combinatorics
 - Permutations
 - Stirling's formula
 - $-\,$ Combinations with and without order
 - Birthday Problem
 - Binomial coefficients
 - Probabilities in poker
 - Bernoulli trials
 - Binomial distribution
 - Expansion of $(1+x)^n$
 - Hypothesis testing
 - Inclusion-exclusion
 - Fixed points
- 3. Conditional probability
 - Showing independence for discrete events
 - Mutually independent events
 - Joint random variables
 - Joint distributions
 - Continuous conditional probabilities
 - Continuous independent events
 - Joint densities
- 4. Functions of random variables and important distributions and densities
 - Poisson Distribution
 - Negative binomial distribution
 - Hypergeometric distribution
 - Exponential density
 - Functions of random variables
 - Normal density
- 5. Expectation and Variance
 - Calculating expected values of random variables
 - Expected values of functions and sums of random variables
 - Conditional expectation
 - Expectation of product of independent random variables
 - Calculating variance
 - Variance of sums of random variables
 - Expectation and variance of important distributions
- 6. Sums of independent random variables

- Convolution of two uniform densities
- Convolution of two exponential densities
- 7. Law of Large Numbers
 - Using the Chebyshev inequality
- 8. Central Limit Theorem
 - Statement of the Theorem and estimating probabilities
 - Confidence interval for surveys
- 9. Markov chains
 - Gambler's Ruin: absorption probabilities and time to absorption
 - Simple random walk on the integers
 - Simple random walk on a graph
 - Transition probabilities
 - Stationary distribution
 - Absorbing and transient states
 - Fundamental matrix
 - Time to absorption vector
 - $-\,$ Matrix of absorption probabilities
 - Hitting times
 - Ergodic/irreducible Markov chains
 - Regular Markov chains, $P^n \to \ldots$
 - Ergodic Theorem
 - Reversible Markov chains
 - $-\,$ Metropolis-Hastings algorithm

Relevant chapters in the textbook: 1.2, 2.2, 3.1, 3.2, 4.1, 4.2, 5.1, 5.2, 6.1, 6.2, 6.3, 7, 8, 9, 11, 12.2