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1 Binomial Distribution at a glance

As n grows, the diagram will appear smoother, and more strongly centered around n/2. In general, even if p is not 1/2,

it will be centered around p× n. The diagram on the left shows the distributions for n = 40, with p = 1/2 and p = 0.2.
The diagram on the right shows the same for n = 160.
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2 Binomial expansion

Binomial coe�cients come up in expressions like (x+1)n. This can be expanded as (x+1)n = (x+1)(x+1) . . . (x+1).

If we start multiplying these out, each term will correspond to a way of picking either x or 1 from each bracket. Its

power of x will be the number of times x was chosen. There are (nj) ways to choose x j times and 1 n− j times. That's

why:

(x+ 1)n = xn + nxn−1 +

(
n

n− 2

)
xn−2 +

(
n

n− 3

)
xn−3 + · · ·+

(
n

3

)
x3 +

(
n

2

)
x2 + nx+ 1.

This can be easily testes on (x+ 1)4 = (x+ 1)(x+ 1)(x+ 1)(x+ 1) = x4 + 4x3 + 6x2 + 4x+ 1.

3 Hypothesis testing

Alice is a good chess player, and her friends have seen her win about 60% of her games against the computer. Recently

she's been practicing a lot, and she's pretty sure that her probability of winning a game is now 0.7. She wants to convince
her friends of that, so she's planning to play 10 games. Her friends will be convinced if she wins at least 7 of them. Is

that a good method?

Null Hypothesis: Alice still wins with probability 0.6.

Alternate Hypothesis: Alice improved her game, and now wins with probability 0.7.
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Fig. 1 Probability of type I error for
a given m provided the hypothesis is

false can be pictured on a binomial
distribution for p = 0.6 (top). This
is the probability Alice, provided she

did not improve at chess still convinces
her friends that she did. If she did im-
prove, the probability of type II error
for a given m can be pictured on a bi-
nomial distribution for 0.7 (bottom).
This happens if she didn't win enough
games to convince her friends.

If Alice still wins every game with probability 0.6, how would you calculate the

probability that she will win at least 7 games? If the alternate hypothesis is false,

but a test suggests it's true it's called a type I error in statistics.

If Alice now wins every game with probability 0.7, how would you calculate the

probability that she wins at most 6 games? If the alternate hypothesis is true,

but the experiment suggests that it's false that's called a type II error.

Is there some better numberm, rather than 7, to set as the threshold? The higher

the m, the lower the probability of a type I error, and the higher the probability

of a type II error. The key to a good hypothesis test is �nding m that makes the

probabilities of both errors as small as possible.

Consider a binomial distribution for p = 0.6. If Alice didn't get better at chess,
then the probability of type I error is:

10∑
i=7

(
10

i

)
0.6i0.410−i ' 0.382

and if she has improved to p = 0.7, the likelihood of type II error is:

6∑
i=0

(
10

i

)
0.7i0.310−i ' 0.350

The higher the m, the lower the probability of a type I error, and the higher

the probability of a type II error. What happens to the errors as we increase the

number of games Alice will play? Say, if she plays n = 20 games and needs to

win 14 of them?

As we vary the number of games n and the success threshold m, the probability

of type I error if Alice has not improved is:

n∑
i=m

(
n

i

)
0.6i0.4n−i,

and the probability of type II error if Alice did improve is:

m∑
i=0

(
n

i

)
0.7i0.3n−i.

4 Inclusion-exclusion

Recall that for two events A and B, P (A ∪B) = P (A) + P (B)− P (A ∩B), since as you add the probabilities of A and

B, you add their intersection twice, so you need to subtract it once.

1 1

3

1

2

2 2

For three events A,B,C we can �nd an analogous formula. As we add P (A), P (B)
and P (C) we include each of the intersections of only 2 sets twice, and the intersection

of all 3 three times. If we then subtract each intersection of two sets, we ill subtract

the intersection of all three each time, and there are 3 of them. So we need to add

P (A ∩B ∩ C) in at the end. The overall formula is:

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C).

The general expression for n events A1, A2, . . . , An is:

P (A1 ∪A2 ∪ · · · ∪An) =
∑

1≤i≤n

P (Ai)−
∑

1≤i<j≤n

P (Ai ∩Aj) +
∑

1≤i<j<k≤n

P (Ai ∩Aj ∩Ak)

−
∑

1≤i<j<k<l≤n

P (Ai ∩Aj ∩Ak ∩Al) + · · ·+ (−1)n+1P (A1 ∩A2 ∩ · · · ∩An)

So, �rst adding all single sets, then subtracting intersections of pairs, adding intersections of triples, subtracting inter-

sections of quadruples and so on.
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5 Example: �xed points of a permutation

A �xed point in a permutation of {1, 2, . . . , n} ia any number j that appears in jth position. For example, if a permutation

starts with 1, then 1 is a �xed point. If 2 appears in 2nd position, then 2 is a �xed point. Here are the permutations of

{1, 2, 3} with their �xed points highlighted in red:

123, 132, 213, 231, 321, 312

Pick a permutation of {1, 2, . . . , n} uniformly at random.

� What is the probability that it has n �xed points?

There is only one permutation that has n �xed points, and that is 12 . . . n. The probability is therefore 1/n!.

� What is the probability that it has n− 1 �xed points?

This is impossible - if you �x n− 1 elements, the last one must also fall into place.

� What is the probability that it has n− 2 �xed points?

There are (n2) ways to pick two elements to switch. All other elements are �xed. The probability is (n2)/n!

� What is the probability that 1 is a �xed point of that permutation?

One way to think about it is that, if you �x 1 you have (n− 1)! ways of arranging everything else. So the probability

is (n−1)!/n! = 1/n. Another way of thinking about it is that there is equally many permutations starting with each

number, so necessarily exactly 1/n of them start with a 1. The same argument works with any other �xes point, i.e.

the probability that i, where 1 ≤ i ≤ n, is a �xed point is 1/n.

� What is the probability that it has no �xed points?

Finding a probability that the permutation has no �xed points is more complicated. De�ne Ai to be the event that i is

a �xed point of the permutation. Then:

P (no �xed points) = 1− P (at least one �xed point) = 1− P (A1 ∪A2 ∪ · · · ∪An)

so we need to �nd P (A1 ∪A2 ∪ · · · ∪An). For that, we need inclusion-exclusion.

We know that:

P (A1 ∪A2 ∪ · · · ∪An) =
∑

1≤i≤n

P (Ai)−
∑

1≤i<j≤n

P (Ai ∩Aj) +
∑

1≤i<j<k≤n

P (Ai ∩Aj ∩Ak)

−
∑

1≤i<j<k<l≤n

P (Ai ∩Aj ∩Ak ∩Al) + · · ·+ (−1)n+1P (A1 ∩A2 ∩ · · · ∩An).

We can �nd
∑

1≤i≤n

P (Ai) as follows: we just argued that for any Ai, P (Ai) =
1
n . There are n of them, so:

∑
1≤i≤n

P (Ai) =
n

n
= 1.

A1 ∩ A2 is the event that both 1 and 2 are �xed points. If 1 and 2 are �xed, there are still (n− 2)! ways to arrange all

the other elements. This probability is therefore (n−2)!
n! = 1

n(n−1) . For any two elements, the probability that they are

both �xed is also 1
n(n−1) . There are (n2) such pairs, so:

∑
1≤i<j≤n

P (Ai ∩Aj) =

(
n

2

)
1

n(n− 1)
=

n(n− 1)

2!

1

n(n− 1)
=

1

2!
.

Similarly, for any j ≤ n, 1, 2, . . . , j are all �xed points with probability (n−j)!
n! . There are (nj) such sets, so the jth term

of the sum will be: (
n

j

)
(n− j)!

n!
=

n!

j!(n− j)!

(n− j)!

n!
=

1

j!
.

We can conclude that:

P (A1 ∪A2 ∪ · · · ∪An) = 1− 1

2!
+

1

3!
− 1

4!
+ · · ·+ (−1)n+1 1

n!
,

P (no �xed points) = 1− P (A1 ∪A2 ∪ · · · ∪An) =
1

2!
− 1

3!
+

1

4!
+ · · ·+ (−1)n 1

n!
.

Recall also that ex = 1+ x+ x2

2! +
x3

3! + . . . , so:

P (no �xed points)→ e−1 as n→∞.
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