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Lecture 25 Math 20 Fall 2014, Dartmouth College

1 Markov Chain Monte Carlo

Early in the course, we used a Monte Carlo simulation to estimate π. That was pretty cool, who knew π is really what

people always told you it was and they weren't lying all along. We used the fact that there is a standard Python command

that simulates sampling a point from a uniform distribution. But what if I asked you to sample a point according to

some complicated density or distribution? Chances are you'd have no idea how to go about it, and not for nothing -

�nding an algorithm that simulates a given distribution is out of reach for contemporary computers - even just �nding a

normalizing factor would often take a long time even on a very powerful machine. But we can approximate a distribution

with a Markov chain.

Coming up with a Markov chain that gives you a speci�c distribution is, again, out of our reach. If you have a probability

vector, �nding a suitable transition matrix is quite a problem. However, if we have another transition matrix, with some

other stationary distribution we may be able to modify it to suit our needs. Here's the intuitive idea.

Suppose you're at the bus terminal at Boston South Station and the departures board is broken, so you don't now what

buses are departing in the future. You do however know how many buses a day depart to each destination so you know if

they're common or rare. You have a set of possible destinations with varying preference. When a bus comes, you have to

decide if you're gonna get on the bus or stay where you are. This is a very rough outline of how the Metropolis-Hastings

algorithm works.

De�nition 1 (Metropolis-Hastings Algorithm) Suppose we have some target stationary distribution s = (s1, . . . , sM )
on states {1, 2, . . . , M}, and si > 0 for all i (otherwise, delete that state.) Let P be a transition matrix on the same

states (it may have a di�erent stationary distribution.) Starting in some state X0, at each stage do:

Suppose that Xn = i.

� Draw a proposed next state j according to the probability distribution in ith row of P.

� Accept this as Xn+1 with probability:

aij = min(1,
sjPji
siPij

),

otherwise Xn+1 = i.

The probability distribution of this MC will approach s. However, how fast it approaches s if we run the chain for long

enough will depend on the choice of initial Markov chain, i.e. on P .

Example 1 (Smaug's Lair) Bilbo Baggins managed to get into Smaug's lair and found m treasures. Each treasure is

worth some amount gi of gold and weights wi pounds. Bilbo can carry at most W pounds. How should he pick which

treasures to steal?

This is called the knapsack problem, and it's really hard to optimize. Even powerful computers would time out if you

asked for calculation on many items, and Smaug's lair is sure to have many, many treasures. So instead of �nding the

best possible combination, let's settle for some solution that gives us high value. Consider the following model. Each

subset of the treasures is a binary vector x = (x1, . . . , xM ), with 1 if the treasure is included and 0 if it isn't. Let X be

the set of vectors such that the total wights is at most W . Suppose we start from some x ∈ X and run the following

MC: at each stage pick a coordinate of the vector uniformly at random, and �ip it as long as the result of the �ipping is

in X (i.e. Bilbo can carry it), stick to x otherwise.

What are the transition probabilities between x, y ∈ X? Well, if they di�er by more than one coordinate, the transition

probabilities are 0. If they only di�er by one coordinate, we go from one to the other if that coordinate is picked, so

transition probabilities from x to y and from y to x are both 1/M . So this transition matrix is symmetric! And is the

transition matrix is symmetric, the stationary distribution is uniform over X.

We just found a perfectly functional MC, and we know its transition probabilities and stationary distribution. How do

we modify it to help us get items with high value? We use the Metropolis-Hastings algorithm.

Suppose that the value of collection x is V (x) and we are shooting at a probability distribution that is proportional to

V (x), i.e:
sx = αV (x) for some normalizing factor α.
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Then the Metropolis-Hastings algorithm can be applied by, at any state x, drawing y according to the previous method

and setting the next step to y with probability:

axy = min(1,
αV (y)Pyx
αV (x)Pxy

) = min(1,
V (y)

V (x)
),

and stay at x otherwise. Notice that we used the fact that Pxy = Pyx = 1/M . In other words, if V (y) ≥ V (x) we always
go to y, but there is also some probability we might go to y even if the value is smaller. This way the sampling favors

collections with high value. We can make it even more skewed towards high value, by aiming at probability eβV (x) for

some normalizing factor β, then we'd have:

axy = min(1,
eβV (y)

eβV (x)
) = min(1, eβ(V (y)−V (x))).

2 Solutions to practice problems

I. Which of the following matrices are transition matrices for regular Markov chains?

Recall that a MC is regular if there is a natural number n such that one can get from any state to any other state in

exactly n steps. Equivalently, if some power of the transition matrix has all entries positive.

a. This matrix has all entries positive, so the chain is clearly regular.

b. P 2 has all entries positive. Alternatively, it's easy to check that the following routes are all possible in two steps:

A to A: stay at A twice

A to B: stay at A, go to B

B to A: go to A, stay at A

B to B: go to A, go to B

c. No, B is an absorbing state so there is no way to get anywhere else from B.

d. No, you will alwasy be at one state on even steps and the other at odd dteps.

e. Yes, you can clearly get anywhere from anywhere in at most 2 steps, and if you have steps to spare just wait at that

particular state.

II. A cat and a mouse are in a two-room apartment. At each time step, the cat will stay in the same room with probability

0.2 and go to the other room with probability 0.8. If the mouse is in room 1, it will stay with probability 0.7 and go to

room 2 with probability 0.3. If the mouse is in room 2, it will stay with probability 0.4 and go to room 1 otherwise.

� Find stationary distributions of the cat and mouse Markov chains.

The two Markov chains are:

cat =

[
0.2 0.8
0.8 0.2

]
mouse =

[
0.7 0.3
0.6 0.4

]
And the stationary distributions can be derived from a system of linear equations. For the cat:

a+ b = 1
0.2a+ 0.8b = a

0.8b = 0.8a
a = b = 1/2
And for the mouse:

a+ b = 1
0.7a+ 0.6b = a

0.6b = 0.3a
2b = a = 2/3
And so the stationary distributions are:

scat = (1/2, 1/2), smouse = (2/3, 1/3).

� Set up a joint Markov chain with four di�erent states (how?). What is the expected time until they are in the same

room?

Let (x, y) be the state where x is the room the cat is in and y is the room the mouse is in. So the possible states are

(1, 1), (1, 2), (2, 1), (2, 2). Set up (1, 1) and (2, 2) as absorbing states. The transition matrix becomes:

P =

(1, 2)
(2, 1)
(1, 1)
(2, 2)


2/25 12/25 3/25 8/25
12/50 7/50 28/50 3/50

0 0 1 0
0 0 0 1





3

And we're only interested in the upper left part of this matrix:

Q =

[
2/25 12/25
12/50 7/50

]
The fundamental matrix is:

N = (I −Q)−1 =

[
23/25 −12/25
−12/50 43/50

]−1

=
250

169

[
43/50 12/25
12/50 23/25

]
=

5

169

[
43 24
12 46

]
And the times to absorption:

t =

(
5× 67/169
5× 58/169

)
III. Consider the Markov chain with transition Matrix:

P =

 1/2 1/3 1/6
3/4 0 1/4
0 1 0


a. Show that this is a regular Markov chain.

A

BC

1
2

1
3

1
6

3
4

1
4

1

It's possible to get from any state to any other state in exactly three steps:

A→ A→ A→ A

A→ A→ A→ B

A→ A→ A→ C

B → A→ A→ A

B → A→ A→ B

B → A→ A→ C

C → B → A→ A

C → B → A→ B

C → B → A→ C

b. The process is started in state A, �nd the probability that it is in state C after two steps.

P11P13 + P12P23 + P13P33 =
1

2

1

6
+

1

3

1

4
+

1

6
0 =

2

12
=

1

6

c. Find the stationary distribution.

a+ b+ c = 1
2a+ 3b = 4a
3b = 2a
a+ 3c = 3b
a+ 3c = 2a
3c = a

c+ 2c+ 3c = 1
c = 1/6

s = (1/2, 1/3, 1/6)

IV. Is a simple random walk on the path pictured below an ergodic Markov chain? Is it regular?

0 1 2 3 4 5 6 7 8 9

It's ergodic but not regular, this is another bipartite graph (same reason as 1d.)

V. Toss a fair die repeatedly. Let Sn denote the sum of the outcomes after n tosses. Let Pn be the proportion of the

�rst n values Sn that are divisible by 7. It converges to a limit. Find this limit, by setting this process up as a 7-state

Markov chain.
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The states in the chain correspond to possible remainders of the sum. If Sn is divisible by 7, then Sn+1 can be anything

but divisible by 7, and so on:

P =



0 1/6 1/6 1/6 1/6 1/6 1/6
1/6 0 1/6 1/6 1/6 1/6 1/6
1/6 1/6 0 1/6 1/6 1/6 1/6
1/6 1/6 1/6 0 1/6 1/6 1/6
1/6 1/6 1/6 1/6 0 1/6 1/6
1/6 1/6 1/6 1/6 1/6 0 1/6
1/6 1/6 1/6 1/6 1/6 1/6 0


Since this matrix is symmetric (even more so, every state is equivalent... but we don't need a condition as strong as

that.) the stationary distribution is (1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7). So the sum is divisible by 7 about 1/7th of

the time.

VI. Prove that in an r-state ergodic chain it's possible to go from any state to any other state in at most r − 1 steps.

By pidgeonhole principle, if the sequence X0, X1, . . . has at least r states, and it doesn't include the destination state,

some state will appear at least twice. Then you can reduce the sequence by deleting what came before the last appearance

of that state.

VII. Consider a Markov chain with the following transition matrix, for some a, b :

P =

[
1− a a

b 1− b

]
a. Under what conditions is P absorbing?

If either a or b is 0, or both.

b. Under what conditions is P ergodic but not regular?

If a = b = 1. Otherwise, suppose that a 6= 1, and a, b 6= 0 Then can go A → A → A, A → A → B, B → A → A,

B → A→ B, and the chain is regular. The same argument works for b 6= 1.

c. Under what conditions is P regular?

a, b 6= 0, and either a 6= 1 or b 6= 1.
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