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Lecture 21 Math 20 Fall 2014, Dartmouth College

Here's the textbook's favorite example of a Markov chain - weather in the Land of Oz. If it's raining today in the Land of

Oz, tomorrow it will rain with probability 1/2, it will be a nice day with probability 1/4 or it will snow with probability

1/4. If it's a nice day today, tomorrow will either rain or snow with equal probability. If it's snowing, it will snow with

probability 1/2, or either rain or it will be a nice day - each with probability 1/4. The corresponding transition matrix

is:

P =
R

N

S

 1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2


Which can also be illustrated with a random walk on this graph:
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If it's a nice day today in the Land of Oz, what's the chance it will be a nice day

the day after tomorrow?

Suppose we are walking on the graph on the left, starting at N . There are 3 di�erent

ways of being back at N 2 steps later - You can stay at N both times, go to R and

back or go to S and back. Remember, when we talk about entries in a matrix, pij
means �entry in row i and column j." In a transition matrix, pij is the probability

that if the MC is in state i, it will be in state j on the next step. Notice how all the

rows add up to 1?

If it's a nice day today, the probability that it will be a nice day the day after

tomorrow is:

pNRpRN + pNNpNN + pNSpSN =
1

2

1

4
+ 0 +

1

2

1

4
=

1

4
.

This can also be written as: ∑
j

pNjpjN

And that's the (N,N) entry the matrix you get by squaring the matrix P . In fact, P 2 lists the probabilities of where the

MC will be after TWO steps. The entry in row i, column j of P 2 is the probability that a MC starting at state i will be

at state j after two steps.

Theorem 1 Let P be a transition matrix of a Markov chain with states {S1, . . . , SM}. The (i, j) entry of Pn is the

probability that the Markov chain, starting in state Si, will be in state Sj after n steps.

You can �nd P, P 2, . . . , P 6 for the Weather in the Land of Oz in the textbook on page 408.

Exercise: It's Monday today in the Land of Oz. Can you tell me, without additional information, what the probability

is that it will snow on Sunday? If it's Monday morning and looks like it will snow, rain or it will be a nice day each with

probability 1/3 today,what is the chance that it will snow on Thursday?

(
1/3 1/3 1/3

) 1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2

 =
(
5/12 2/12 5/12

)

If instead we assumed that the probability distribution for weather on Monday will instead be (0.4, 0.2, 0.4) for rain,

nice day and snow respectively, the probabilities would e the same the next day:

(
0.4 0.2 0.4

) 1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2

 =
(
0.4 0.2 0.4

)
we call this the stationary distribution - it's an eigenvector of P that has nonnegative entries that add up to 1. Every

Markov chain has a stationary distribution, and often the stationary distribution is unique.
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De�nition 1 (Stationary Distribution) If P is an m ×m transition matrix of a Markov chain, then the vector u

such that all entries ui are nonnegative,
∑m

i=1 ui = 1 and:

uP = u,

is the stationary distribution of P.

Consider a simple random walk on:

The corresponding transition matrix and its powers are:

P =

[
0 1
1 0

]
P 2 =

[
1 0
0 1

]
P 3 =

[
0 1
1 0

]
. . .

The stationary distribution of this walk is (1/2, 1/2). Which means that if at the beginning we �ip a coin to decide

where the walk should start, then at any step the probability distribution for the current location is (1/2, 1/2). But a
particular walk, that has a given starting point, will not approach that distribution. Looking at the Land of Oz example

gave us an impression that the overall probability distribution of the position of the walk should approach the stationary

distribution. That is, in fact, often the case - but not in the walk above.

Theorem 2 If some power P i, i ∈ N of the transition matrix P has all entries positive, then:

P (Xn = Sj) = uj as n→∞.

Equivalently,

Pn →

 u
...

u

 as n→∞.

This theorem doesn't apply to the simple random walk above, because all powers of P have 0 entries.

A Markov chain is called irreducible if for any starting state there is a way to get to any other state in a �nite number

of steps. Stationary distributions of irreducible Markov chains are unique. A simple random walk on this graph is an

example of an MC that is not irreducible:
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Can you �nd two di�erent stationary distributions for this walk?

So, for graphs that do satisfy the condition of Theorem 2, the actual probability distribution of where the walk is at any

given moment will tend to u. If you start the process somewhere, wait long enough, and freeze it, the current state will

be distributed approximately according to u.


