Lecture 15, 10/20

1 Independent trials

Let S_n be the sum of *n* Bernoulli trials X_1, \ldots, X_n , each with p = 1/6.

- 1. Find $\mu = E(X_i)$ and $\sigma^2 = V(X_i)$.
- 2. For any n, find $E(S_n)$ and $V(S_n)$.
- 3. Find $E(\frac{S_n}{n})$ and $V(\frac{S_n}{n})$. What does $\frac{S_n}{n}$ describe?

Theorem 1 (Chebyshev inequality)

Let X be a random variable with expected value $\mu = E(X)$ and let $\epsilon > 0$ be any positive real number. Then:

$$P(|X - \mu| \ge \epsilon) \le \frac{V(X)}{\epsilon^2}$$

The probability that X differs from μ by ϵ or more is bounded by $V(X)/\epsilon^2$

Using Chebyshev inequality, find the bounds on the following:

$$P(|S_{360} - 60| \ge 10) \le$$

$$P(|S_{360} - 60| \ge 20) \le$$

$$P(S_{3600} - 600| \ge 100) \le$$

$$P(|S_{3600} - 600| \ge 200) \le$$

$$P(|\frac{S_{3600}}{360} - \frac{1}{6}| \ge \frac{1}{36}) \le$$

$$P(|\frac{S_{3600}}{3600} - \frac{1}{6}| \ge \frac{2}{36}) \le$$

$$P(|\frac{S_{3600}}{3600} - \frac{1}{6}| \ge \frac{1}{36}) \le$$

$$P(|\frac{S_{3600}}{3600} - \frac{1}{6}| \ge \frac{1}{36}) \le$$

In other words, as the number of trials increases, the probability that the average differs from the mean by any specific amount gets smaller. This property is called the *Law of Large Numbers*.

2 Law of Large Numbers

Let X_1, X_2, \ldots, X_n be an independent trials process where each trial has finite expected value $\mu = E(X_i)$ and finite variance $\sigma^2 = V(X_i)$. Let $S_n = X_1 + X_2 + \cdots + X_n$. Then for any $\epsilon > 0$, Chebyshev inequality on S_n/n implies:

$$\lim_{n \to \infty} P(|\frac{S_n}{n} - \mu| \ge \epsilon) = 0.$$

Equivalently,

$$\lim_{n \to \infty} P(|\frac{S_n}{n} - \mu| < \epsilon) = 1.$$

Notice that as n grows, $E(S_n/n)$ stays the same, it's always μ . But $V(S_n/n)$ is:

$$V(S_n)/n^2 = n\sigma^2/n^2 = \sigma^2/n,$$

which gets smaller and smaller. So for the case of Bernoulli trials with p = 1/6, we get:

$$E\left(\frac{S_n}{n}\right) = \mu = \frac{1}{6}$$
$$V\left(\frac{S_n}{n}\right) = \frac{npq}{n^2} \frac{5}{36n}.$$

LAW OF LARGE NUMBERS: AS WE PERFORM MORE AND MORE TRIALS, THEN WITH PROBABILITY APPROACHING 1 THE PROPORTION OF SUCCESSFUL TRIALS APPROACHES p.

3 Uniform density

This works exactly the same way in the continuous case. For instance, let X_1, \ldots, X_i each be chosen uniformly at random from [0,1]. We have: $\mu = E(X_i) = 1/2$, $\sigma^2 = V(X_i) = 1/12$. Then if $S_n = X_1 + \cdots + X_n$. Find:

1. $E(\frac{S_n}{n}) =$

2.
$$V(\frac{S_n}{n}) =$$

Then, fill in the appropriate form of Chebyshev inequality for S_n being the sum of n uniformly distributed random variables on [0,1]:

For any $\epsilon > 0$,

$$P(|\frac{S_n}{n} - | \ge \epsilon) \le$$

,

Which clearly satisfies:

$$\lim_{n \to \infty} P(|\frac{S_n}{n} - | \ge \epsilon) = 0.$$