
Basic Programming
Flow Control and Loops in Java

Q1. Which is not a primitive data type?
A. int

B. double

C. char

D. String

Q2. How to declare a int variable?
A. int i = 5;

B. int i == 5;

C. int i = “5”;

Q3. What computer use for data encoding?
A. Parts

B. Bits

C. Elements

D. Dots

Q4. What is the highest value possible to encode on
unsigned 8 bits?
A. 127

B. 255

C. 300

Q5. How many bits int has?
A. 8

B. 64

C. 32

D. 16

Q6. How to declare a float variable?
A. float i = 2.5;

B. float i = 2,50;

C. float i = 2.5f;

Q7. What is a String?
A. Object type

B. Primitive type

C. Flow type

Q8. Which calculation gives ‘true’ result?
int i = 5;

int z = 9

A. (i < z) || (i == z)

B. (z > i) && (i*z < 45)

C. false || true && (z == i)

Q9. Which is correct?
int a = 4
A. if(a%3==0){

System.out.println(a+“ is divisible by 3”);
}
other{

System.out.println(a+“ is not divisible by 3”);
}
B. if(a%3==0){

System.out.println(a+“ is divisible by 3”);
}
else{

System.out.println(a+“ is not divisible by 3”);
}
C. which(a%3==0){

System.out.println(a+“ is divisible by 3”);
}

Q. Answers
1. D

2. A

3. B

4. B

5. C

6. C

7. A

8. A

9. B

Quick repetition… Lesson_2: “If we have logic…”
if(a%3==0){

System.out.println(a+“ is divisible by 3”);

} else {

System.out.println(a+“ is not divisible by 3”);

}

More complicated flow control
Print out the information on whether the variable x is positive, negative or

equals to 0.

How to do it?

Chaining if statements
if (x > 0) {
 System.out.println("x is positive");
} else if (x < 0) {
 System.out.println("x is negative");
} else {
 System.out.println("x is zero");
}

Chaining is like adding wagons - each is on same level

Nesting if statements
if (x == 0) {
 System.out.println("x is zero");
} else {
 if (x > 0) {
 System.out.println("x is positive");
 } else {
 System.out.println("x is negative");
 }
}

Nesting is like “Matryoshka doll” toy - putting one into another

Chaining vs Nesting
● Both are lexically fine

● Imagine nesting with more options… 4 or 12 or 15…

● And now close all “else” statements

● Difficult to read and very error prone

if(clientType.equals("newsletter_member")){
price *= 0.9;

} else if(clientType.equals("regular")){
price *= 0.85;

} else if(clientType.equals("vip")){
price *= 0.80;

} else if(clientType.equals("special")){
price *= 0.75;

} else {
price *= 0.95;

}

What about performance?
String clientType = "unknown";
if(clientType.equals("newsletter_member")){

price *= 0.9;
} else if(clientType.equals("regular")){

price *= 0.85;
} else if(clientType.equals("vip")){

price *= 0.80;
} else if(clientType.equals("special")){

price *= 0.75;
} else {

price *= 0.95;
}

4 checks before reaching out propper option….

“Switch” is a solution!
String clientType = "unknown";
int price = 100;
switch(clientType){
 case "newsletter_member":
 price *= 0.9;
 break;
 case "regular":
 price *= 0.85;
 break;
 case "vip":
 price *= 0.80;
 break;
 case "special":
 price *= 0.75;
 break;
 default:
 price *= 0.95;
 break;
}

Just 1 check before reaching out

propper option….

Note: in “case” it’s possible to use:

● primitives

● Enums

● Strings (from Java7).

Why we use “break” -> try on your

own with different “clientType”

“Switch” is a solution!
String clientType = "unknown";
int price = 100;
switch(clientType){
 case "newsletter_member":
 price *= 0.9;
 break;
 case "regular":
 price *= 0.85;
 break;
 case "vip":
 price *= 0.80;
 break;
 case "special":
 price *= 0.75;
 break;
 default:
 price *= 0.95;
 break;
}

● “break” stops block execution

and make program to continue

after its end

● very useful in switch and all

loops

More on flow control...
If you want to see program flow in diagrams visit:

● https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue

-jump/

● https://www.geeksforgeeks.org/switch-statement-in-java/

● https://www.geeksforgeeks.org/string-in-switch-case-in-java/

https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/
https://www.geeksforgeeks.org/switch-statement-in-java/
https://www.geeksforgeeks.org/string-in-switch-case-in-java/

The point of programming is to automate things
Code starts to be useful the moment it’s

less work to write the code than to do the

thing the code is supposed to do by hand.

“Add all numbers from 1 to 100.”

The point of programming is to automate things
Code starts to be useful the moment it’s

less work to write the code than to do the

thing the code is supposed to do by hand.

“Add all numbers from 1 to 100.”

public class AddingNumbers{

 public static void main(String args[])

{

 int sum=0;

 for (int x = 1; x <= 100; x++)

 {sum=sum+x;}

 System.out.println(sum);

} }

The point of programming is to automate things
Code starts to be useful the moment it’s

less work to write the code than to do the

thing the code is supposed to do by hand.

“Add all numbers from 1 to 100.”

FOR ALL X FROM 1 TO 100

INCREMENTING BY ONE

ADD THEM TOGETHER.

public class AddingNumbers{

 public static void main(String args[])

{

 int sum=0;

 for (int x = 1; x <= 100; x=x+1)

 sum=sum+x;

 System.out.println(sum);

}

}

The point of programming is to automate things
Code starts to be useful the moment it’s

less work to write the code than to do the

thing the code is supposed to do by hand.

“Add all numbers from 1 to 100.”

FOR ALL X FROM 1 TO 100

INCREMENTING BY ONE

ADD THEM TOGETHER.

public class AddingNumbers{

 public static void main(String args[])

{

 int sum=0;

 for (int x = 1; x <= 100; x=x+1)

 sum=sum+x;

 System.out.println(sum);

}

}

how to get from
one step to the next

public class AddingNumbers{

 public static void main(String args[])

{

 int sum=0;

 for (int x = 1; x <= 100; x=x+1)

 sum=sum+x;

 System.out.println(sum);

}

}

how to get from
one step to the next

Figure out how to write code that:

a) Adds all numbers from 2 to 200

b) Adds all even numbers from 2 to 200

c) int n = 1 + (int)(Math.random() * 10);

will generate a random integer n from 1 to 10.

Write code that will add all numbers from

0 to 200 that are divisible by n.

Exercises

Arrays
We want the code to automate repetition, and we also want it to store large amounts of

data.

How to list items of the same type? For example, we can create a shopping list.

String[] ShoppingList={“eggs”,”bread”,”milk”};

for (String x: ShoppingList){

System.out.println(x);

}

Arrays
We want the code to automate repetition, and we also want it to store large amounts of

data.

How to list items of the same type? For example, we can create a shopping list.

String[] ShoppingList={“eggs”,”bread”,”milk”}; we have to declare the data type of

the elements - the same one for the whole string

for (String x: ShoppingList){ we can iterate our “for” loop over elements in the

string

System.out.println(x);

}

Arrays
We want the code to automate repetition, and we also want it to store large amounts of

data.

How to list items of the same type? For example, we can create a shopping list.

String[] ShoppingList={“eggs”,”bread”,”milk”}; we have to declare the data type of

the elements - the same one for the whole string

System.out.println(ShoppingList.length);

Arrays
We want the code to automate repetition, and we also want it to store large amounts of

data.

How to list items of the same type? For example, we can create a shopping list.

String[] ShoppingList={“eggs”,”bread”,”milk”}; we have to declare the data type of

the elements - the same one for the whole string

for (int i=0, i<ShoppingList.length, i++){

System.out.println(ShoppingList[i]);

}

Arrays - indexing
String[] ShoppingList={“eggs”,”bread”,”milk”};
for (int i=0, i<ShoppingList.length, i++){

System.out.println(ShoppingList[i]);
}
How index “i” behaves?

Arrays are 0 based and this is a general programming rule.

Arrays have length property - which is equal to number of elements. How many of

them we have here?

int i 0 1 2

shopping eggs bread milk

In Java, the data type and the length of the array can’t be changed. But we can change the

value of the elements.

public class FunWithArrays{

 public static void main(String args[])

{

 int[] myArray={0,0,0,0,0};

 for (int x: myArray){

 x=(int)(Math.random() * 2);

 System.out.println(x);}

 }

}

In Java, the data type and the length of the array can’t be changed. But we can change the

value of the elements.

public class FunWithArrays{

 public static void main(String args[])

{

 int[] myArray=new int[5];

 for (int x: myArray){

 x=(int)(Math.random() * 2);

 System.out.println(x);}

 }

}

In Java, the data type and the length of the array can’t be changed. But we can change the

value of the elements.

public class FunWithArrays{

 public static void main(String args[])

{

 int[] myArray=new int[5];

 for (int x: myArray){

 x=(int)(Math.random() * 2);

 System.out.println(x);}

 }

}

create an array of length 5 full of 0s

then take each entry in that array

replace it with 0 or 1 at random

and print the resulting entry

In Java, the data type and the length of the array can’t be changed. But we can change the

value of the elements.

public class FunWithArrays{

 public static void main(String args[])

{

 int[] myArray=new int[5];

 for (int x: myArray){

 x=(int)(Math.random() * 2);

 System.out.println(x);}

 }

}

create an array of length 5 full of 0s

then take each entry in that array:

{replace it with 0 or 1 at random

and print the resulting entry}

So what if we suddenly need to add an entry to an existing array, but cannot change its

length?

Suppose we have an array of 5 integer entries, say

int[] myArray={7,23,314,1,97}

And want to append 17 at the end.

So what if we suddenly need to add an entry to an existing array, but cannot change its

length?

Suppose we have an array of 5 integer entries, say

int[] myArray={7,23,314,1,97}

And want to append 17 at the end.

int[] myArray={7,23,314,1,97}

int[] newArray=int[myArray.length+1]

…

newArray[myArray.length]=17

So what if we suddenly need to add an entry to an existing array, but cannot change its

length?

Suppose we have an array of 5 integer entries, say

int[] myArray={7,23,314,1,97}

And want to append 17 at the end.

int[] myArray={7,23,314,1,97}

int[] newArray=int[myArray.length+1]

…

newArray[myArray.length]=17 WRITE THAT CODE!

Suppose we have an array of 5 integer entries, say {7,23,314,1,97}, And want to append 17

public class FunWithArrays{
 public static void main(String args[])

{
 int[] myArray = {7,23,314,1,97};

int oldLength = myArray.length;
int[] newArray = new int[oldLength+1];

for (int x=0, x<oldLength,x=x+1){

 newArray[x]=myArray[x];
}
newArray[oldLength]=17;

 }
}

“While” loops
A while loop repeats as long as a Boolean condition is true. When it is false, the loop

stops and the rest of the code is executed.

while (1<2) {
 System.out.println(“Doing the loop.”);
}
Will print “Doing the loop” forever, because “1<2” never stops being true.

while (2<1) {
 System.out.println(“Doing the loop.”);
}
Will do nothing.

“While” loops
A while loop repeats as long as a Boolean condition is true. When it is false, the loop

stops and the rest of the code is executed.

int x=0;
while (x<10) {
 System.out.println(“Doing the loop.”);
 x=x+1;
}

“While” loops
A while loop repeats as long as a Boolean condition is true. When it is false, the loop

stops and the rest of the code is executed.

int x=0;
while (x<10) {
 System.out.println(“Doing the loop.”);
 x=x+1;
}

Will print “Doing the loop.” 10 times.

(int)(Math.random()*2); comes up with either 0 or 1 at random. It simulates flipping a

coin. Can you come up with a while loop that will simulate flipping a coin until

“tails”/”1” comes up twice in a row?

(int)(Math.random()*2); comes up with either 0 or 1 at random. It simulates flipping a

coin. Can you come up with a while loop that will simulate flipping a coin until

“tails”/”1” comes up twice in a row?

There are a lot of possible solutions!

Here’s one:

Try to read it line by line

(translate into words!)

to figure out what’s going on here.

y is the coin flip. What is x???

int x=0;
while (x<2) {
 int y=(int)(Math.random()*2);
 System.out.println(y);
 x=x+y;
 if (x==1 && y==0){
 x=0;
 }
}

More on loops...
If you want to see program flow in diagrams visit:

● https://www.geeksforgeeks.org/loops-in-java/

● https://www.geeksforgeeks.org/for-each-loop-in-java/

● https://www.geeksforgeeks.org/loop-java-important-points/

https://www.geeksforgeeks.org/loops-in-java/
https://www.geeksforgeeks.org/for-each-loop-in-java/
https://www.geeksforgeeks.org/loop-java-important-points/

Exercises
Online editor:

Examples: http://tpcg.io/swjfMA
Exercises: http://tpcg.io/Y3xmfl

Github:
https://github.com/bjowczarek/workshop-lesson-3

http://tpcg.io/swjfMA
http://tpcg.io/Y3xmfl
https://github.com/bjowczarek/workshop-lesson-3

EXERCISES
Exercise 1 http://tpcg.io/oKkofA

Exercise 2 http://tpcg.io/KGcx6Q // requires switch some help on switch here

Exercise 3 http://tpcg.io/io9IEr // solutions at the end of the file

Exercise 4 http://tpcg.io/3JGbg2 // solutions at the end of the file, help on Strings

Those exercises are also on Bartek’s github
https://github.com/bjowczarek/workshop-lesson-3/

http://tpcg.io/oKkofA
http://tpcg.io/KGcx6Q
https://www.tutorialspoint.com/java/switch_statement_in_java.htm
http://tpcg.io/io9IEr
http://tpcg.io/3JGbg2
https://www.tutorialspoint.com/java/java_strings.htm
https://github.com/bjowczarek/workshop-lesson-3/

